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THE USE OF DIRECT ME5HODS FOR THE SOLUTION OF THE 

DISCRETE POISSON EQUATION ON NON-RECTANGULAR REGIONS* 

J. Alan George 

1.    Introduction 

In recent years several special direct methods have been developed 

for solving the discrete Polsson equation on rectangular domains.    These 

methods take advantage of the regular block structure of the coefficient 

matrix, and some of them require an amount of computation which Is close 

to being directly proportional to the number of grid points (equations) 

in the dlscretlzed problem.    Dorr [k] presents an excellent survey of 

these methods.    A considerable number of these algorithms suffer from 

numerical instability and are not suitable for large problems.    An analysis 

of stability of several methods appears In [10]. 

In this paper we describe ways in which these direct methods can be 

used to solve non-rectangular Polsson problems.    We will not concern our- 

selves with which of the direct methods is to be utilized; we merely observe 

that a number of satisfactory ones are available.    Notable among them are 

Buneman's version of the method of odd/even reduction [1,2], and methods 

based on Fourier analysis [7,8], 
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The basic procedure Is as follows.    The domain    R   of the given problem 

Is enclosed In a rectangle over which a uniform mesh Is placed.    The usual 

five-point Polsson difference operator is applied over the entire rectangle, 

yielding a block tri-dlagonal system of equations.    The given problem, how- 

ever,  determines only those elements of the right-hand side which lie in   R; 

the remaining elements can be treated as parameters.    Furthermore, the 

"solution" of the enclosing rectangular "problem" which we have generated 

will have certain constraints Imposed upon it by the presence within the 

rectangle of the boundary   S    of the given (or imbedded) problem.    Dlrichlet 

boundary conditions will require the solution on the rectangle to have 

specified values at grid points which lie on   S;  other types of boundary 

conditions will require specific relations to hold between values at grid 

points lying on and/or adjacent to    S. 

We now summarize our situation.    We have a fast, efficient method for 

solving a specific system of equations, and we cannot delete or modify 

equations of the system because the method depends upon the structure of the 

coefficient matrix.    We generate a system of equations which has this ap- 

propriate form, but for which some of the right-hand sides are unspecified, and 

where the solution must satisfy certain constraints.    Ttiia paper describes 

methods for solving this problem. 



2.    Notation and a Representative Problem 

For deflnlteness, we consider the following problem: 

(2.1)      &u - f    In   R 

u » g    on   SUT 

We superimpose a uniform grid on the rectangle   S,    and for simplicity 

we assume that    T   lies on grid points and on lines adjoining adjacent 

grid points.    Approximating the differential operator with the usual 

five-point difference operator, and writing out an equation for every 

grid point In    S,    we obtain an   N x N    system of equations 

(2.2) Av - h, 

where the vectors   v   and   h   are defined on the grid, and   N   Is the total 

number of grid points In the rectangle.    For expository purposes only, we 

write (2.2) In the following partitioned form: 

(2.3) 

where the vector partitions with subscripts   Q, R, and   T   contain elements 

corresponding to grid points lying In   Q, R, and on   T,    respectively. 

We will denote the number of elements in these partitions by   NQ, N_, and 

ü .    We emphasize that this reordering cannot be done In practice because 

the special direct methods depend upon   A   having the regular block structure 
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which occurs only if the grid points are numbered row by row or column 

by column. 

It should be clear that if    h      and   hQ   are assigned values so that 

the solution to (2.3) satisfies the boundary conditions (i.e., if   v   has 

the correct values), then    v   will be the correct discrete solution to our 

given problem.    In Section 3 a method is presented for finding the values 

to be assigned to   h     and   hQ    so that the above is achieved. 



3· Direct Solution: Method 1 

This method has been described by Hackney [ 7 ], and is closely connected 

to the discrete Green's function [ 6] . Formally, we can invert the parti -

tioned matrix in (2 . 3) to obtain 

VR Bll Bl2 B13 ( ~ ( 3.1 ) VT - B21 B22 B23 hT 

VQ B31 B32 B33 0 

and solving for B22 h.r ' we have 

Since B22 is non- singular {it is positive definite), we have se t hQ to 

zero. We have an efficient method for solving (3 .1) (in a reordered form ) 

so we c n easily obtain B21 ~ as ZT from the soluti on of the system 

All Al2 ZR 

(: (3·3) A21 ~ A23 ZT .. 
A32 A33 ZQ 

The vector hT i s t hen obtained by solvi ng 

Thus, we need B22 , which means that we need the NT corresponding columns 

of the inverse of the coeffi~ient matrix A. 'llli s method, therefore, 

requires solving NT+ 2 systems of the form (2 .2), and the solution of 

t he NT l i near equations (3.4). If we assume that the number of arithmetic 
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operations required to solve (2.2) is   kN/ then-'   the total number of 

operations is about   kNT (N + | H^).    Since    NT will typically be    0(^N), 

the amount of work will be roughly proportional to   N-.    If we suppose   S 

2 h is a square with   n   « N ■ 10   grid points In it, and that   N_ is   2n 

(it could easily be this large for typical regions), then the number of 

arithmetic operations required is   0(ir).    Bils Is not likely to compare 

favourably with solving for   v. using SQR, especially when we consider how 

little programming overhead there is for the SQR process.    Note, however, 

that the matrix   ^  depends only on the geometry of the problem.    Thus, 

if we wish to solve a time-dependent problem, one with a non-linear right- 

hand side, or many problems with the same geometry, then this procedure may 

very well be the best one to use.    It will almost certainly be the best if 

N-,   and   HL    are small relative to   NR. 

-/    Toe factor   k    is actually a very slowly increasing function of   N. 

of the form    I log» /S,    t   a constant. 
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k.    Direct Solution; Method II 

An alternate approach which Is more general than that of the method 

of section 3 Is the following:    Ve replace equations   A^v   + A^v   + 

A2_va ■ h_   in (2.3) with the equations   0v_ ♦ Iv_ + Ov- ■ v_   by adding 

a suitable correction to   A.    obviously, the resulting solution   v   will have 

the correct   v., regardless of the value of   tu.    Defining   F   and   G   by 

(^.1) I j, G - 
Oi 

■^3 

and denoting the coefficient matrix of (2.3) by   A,    we can write the 

equation 

(U.2) 

as 

*u A12 0 

0 I 0 

0 A32 A33 

v„ 

(A + PO )v • h. 

It can be shown [9 ] that 

(k.k) (A ♦ FO1)"1 - A-1- A* ^(1 * oV1?)-^'1. 

Thus, the procedure is 

a) solve AW ■ 0; 

b) eolve Ay. ■ h; 

2) compute y. ■ 0 y. and Y ■ I ♦ WT1; 

d) solve Yy. - y2j 
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e) solve   Ay^ ■ Py, ; 

f) compute    v ■ y-  - y. 

Note that this method Is very flexible.    It allows us to replace any 

equation by another at the expense of one solution of (2.2). 

The amount of computation and storage required is virtually the same 

as for method I.    However, since method II is somewhat more complicated, 

method I seems preferable unless the increased generality provided by 

method II is necessary. 



5«    Iterative Solution Based on Method I 

We nov turn to potentially more efficient ways to utilize direct 

methods to solve non-rectangular Poisson problems.    Our basic problem 

Is to find a solution to (3«^)* and the major expense In the algorithm 

results from the generation of   B-p.    Hence, we would like to arrive at 

an iterative scheme which generates an (approximate)  solution   hjj, ' with- 

out actually requiring   B««.     First note that for an arbitrary vector 

h^,  (3.1) implies 

,00 _„   ..    .00 (5.1) v^ = zT + B22 h^ 

or 

(5.2) B22 4") . vW- .T = v + rW, 

where 

(5-3) w = vT - zT 

and 

(5.^) r(k) » v(,k). vT. 

Here    rv   ' is the residual of the linear system (3-^) and is the difference 

(k) between the solution on    T    generated by   aL '    and the required values    v  . 

Our problem is equivalent to minimizing the quadratic function 

(5.5) I hT B22 hT " hT "' 

where we do not know    B-- but can compute the gradient of   cp.    We are obviously 

free to use any of the many Iterative methods for solving a system of 

linear equations or minimizing a quadratic function that is bounded from below. 

•1 



However, because the residual (gradient) calculation Is expensive 

It Is natural to use a relatively powerful function mlnlmlzer or linear 

equation solver.    For example, we could use the conjugate gradient method, 

or one of the several variable metric algorithms which have been developed 

[3*5]'  ln section 8 we compare SOR to two of these Iterative fonns of 

method I, making use of the conjugate gradient method In one and the 

Davidon-Pletcher-Powell algorithm [ 5 ] in the other.   We shall refer to 

this class of methods as Iterative imbedding algorithms. 
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6.    Iterative Solution Based on Method II 

Using equation (4.3) as a basis, we consider the following Iterative 

scheme-': 
^ 

fA11+Ql    A^ 

(6.1)   A21 

1A31 

A22+ 00.    A, 

'32 

A* \ 
l^] f1^ 

^ T 
|           a 

'^ 

A33+ ^Z V^\ i° 
01 

A21      A22+ ^'P^1    A23 

00 or /     \v^ ^y 

, a   and    ß   real 

positive constants. 

Denoting the coefficient matrix by   A , and expressing the matrix on the 

right-hand side of (6.1) by    (FG   + Ql), where 

(6.2) 

■(*) 

and   G!S    '^-ßll 

we obtain the error equation immediately as 

A^1(FGT + Cff) 

A^^PG1 + ca)A^1Jk (FGT+ ca)e(0). 

v  
We assume that the fast direct methods applicable to solving   Av « h 

can also be used to solve    (A + Ol)v « h, a > 0. 

11 



Now the matrix In the braces Is 

QI 0 0    \      /B^   B12    B13 

A21   A22+ (a-ß)l    ^3        I   B21   B22    B23 

,0 0 CH  /      \B31   B^    B33 

^ 

a B^        a B^ a B13 

B, 

Hence, we have 

-ßB21    (l-ßB22)    -ßB23 ■ %ß 

.aB31        aB^ aB33 

^ - A-^ B^(FaT + C.)e<0). 

Ihe rate of convergence obviously depends critically on    p    Jl,    and u, p 

there appears to be no easy way to determine optimal   a   and    ß.    For 

a = 0. it is easy to show that    ß    should be set to 2/(\     + >w .,   )    where * * f i * max     min' 

\       and   \ .    are the largest and smallest eigenvalues of   Bo0.    B,-. Q then max min D 0 22        0,ß 

has as its largest (in magnitude) eigenvalue    n = (^max- \1iü)/(^max+ ^min^ 

and the iteration then converges.    The problem is, of course,  the difficulty 

in determining estimates of   X and   K .   .    Numerical experiments and max     mln 

further analysis of this method are currently being pursued. 
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7.    Error Bounds and Convergence Criteria 

One of the most difficult problems in the application of an iterative 

process is the determination of a safe and meaningful convergence criterion. 

For a short and very good account of this problem with SQR see [8 ]. 

Briefly, the problem is as follows:    Since we do not know the true (discrete) 

solution, the error at each stage of the iteration must be estimated on the 

basis of such measurable quantities as the size of the residuals or the size 

of the last correction vector.    Unfortunately, small residuals or small 

changes in successive iterates do not guarantee correspondingly small errors 

in the computed solution.    For rather ordinary problems the error can be 

several orders of magnitude larger. 

Ihe iterative imbedding algorithms seem particularly attractive with 

regard to the above problem, as the following theorem demonstrates. 

Theorem 1.    Let   v   be the true discrete solution on the enclosing 

rectangle, and let    v*   be the computed solution, where    v*    satisfies 

the (Dlrichlet) boundary condition to within some value    €, i.e., 

(7.1) l|vT- v*^ < e. 

Then 

(7-2) .      |lvR- v*|| < €. 

Proof;    Let   L   be the discrete Laplaclan operator.    Then the following 

equations are satisfied: 

(7.3) LvR - h^ 

(7A) Lv* . ly 
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Denoting the error in the computed solution by   e,    we have from (7'l)> 

(7.3), and (7.^) that 

(7-5) ^R - 0 

and 

(7.6)      IkplL^c. 

Since -L   is an operator of "positive type," we can apply the well-known 

maximum principle to conclude from (7.5) and (7.6) that ||eJ| »|lv_-v*|| < e. 

Thus, we can determine when to stop the iteration simply by examining 

the largest element of    |e_| .    Since it is difficult to imagine an iterative 

scheme which would not make use of   e-, (it is the residual of (3.10), the 

cost of determining    ||e_l|      should be negligible. 

Ik 
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8.    Numerical Experiments 

We now present seme numerical experiments for a problem of the type 

(2.1), where    S    is covered with a square mesh having   m   rows,    n    columns, 

and mesh width    h,    and where    Q    is a Eh x ih rectangle.    Tbe  "southwest" 

corners of    S    and   Q   are at grid positions (0,0) and (j, ,,)2)    respectively. 

The implementation of the SQR algorithm provides for an Initial ap- 

proximate solution on a coarse grid (with mesh width 2h) which is then used 

to furnish a starting solution on the fine net by using linear Interpola- 

tion,    dirty iterations were carried out on the coarse mesh to obtain the 

initial solution, and these iterations and the time required for them are 

not included in the tables below.    An acceleration parameter   UJ   of 1.8 

was used on the coarse mesh for the first 25 Iterations,  followed by 5 

iterations with    w = 1   to estimate the optimal   u » w*    for the coarse mesh. 

The value    tu* +  -55 (E-Iü*) was found to be n«ar optimal.for the fine mesh. 

The number of Iterations reported for the iterative imbedding ■etttodt 

requires some rälacussiOQ. Obviously each iteration requires substantially 

more work than an SOR Iteration.    The ratio will depend on the size of the 

mesh since the computation required for the direct methods is not quite 

directly proportional to   mn.    Also, the relative sizes of   NR   and 

NR + NT + H-    will affect the ratio because the SOR iterations will (at 

least ideally) only Involve grid points in   R.   A factor of about 10 seems 

reasonable for typical problems having fewer than 20,000 points. 

The time required to compute the right-hand sides of the equations 

is not included in the tables.    All times are for execution of ALGOL W 

programs on an IBM 360/67« 
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Case I:    f - (2-100 /) cos (lOx) 

u > g > y   cos (lOx) 

h . 0.0125, m > lv9> n - 127 

(J^) - (6^,32), k- A -10 

Case II:    Same as Case I except (,)■.;Jn) « (20,UO) and   k » jt ■ 20. 

Method Iterations Maximum 
Error 

Time 
(Seconds) 

SOR 70 U.7X10-* k2 

Imbedding I 5 2xl0"4 2k.O 
Case I Imbedding II 5 2x10"^ 23.7 

Direct N.A. 2x10 ^ 9.6 

SOR 70 U.2xl0'^ kl 

Case II 
Imbedding I 

Imbedding II 

6 
6 

2xl0'k 

2x10 H 

2xl0'k 

28.6 

28.5 

DlreGt N.A. 9.6* 

Imbedding I - method of Section 5 using the Davidon-Pletcher-Powell 

algorithm [ 5 ]. 

Imbedding II - method of Section 5 using the conjugate gradient algorithm. 

Direct - method of Section 3. 

The maximum errors for the direct method and the imbedding methods 

are all the same because the error is due entirely to the truncation error 

of the difference operator.    The error in the discrete solution for these 

methods is below that level. 

Does not include the time required (approximately 3 minutes and 6 

minutes, respectively, for Cases I and II) to generate and decompose 

B22 ^8ee Sectlon 3)' 
16 



9.    Remarks and Conclusions 

The reported times at first do not appear particularly impressive, 

although the times required for the imbedding methods are suhstantially- 

less than for the SOR process.    It is important to keep in mind, however, 

that during the calculation using the methods of Section 5, ve have precise 

information concerning how close our computed solution is to the true 

discrete solution.    This is ohviously highly important in a practical 

situation where the solution to our problem is not known.    As we mentioned 

in Section 7, it is extremely difficult when applying SOR to ascertain 

how close the computed solution is to the true discrete solution.    (For 

example, the maximum change for the last step of SOR in Case I above was 

S.lxlO"5.) 

As one might expect, the rate of convergence of the iterative imbed- 

ding algorithms depends on   IL,.    However, quite extensive experiments seem 

to suggest that the number of iterations does not increase very rapidly with 

N-,    and   ^NZ   iterations are usually sufficient.'   Problems with singularities 

also do not appear to greatly affect the rate of convergence. 

When   NA and   Nm are relatively large, and   R    can be subdivided 
% i 

into a number of rectangular "blocks (R   might be    H- or L-shaped, for 

example), a direct method described in [ 2 ] may be more efficient than the 

method described in Section 3.    It is not obvious if or when its iterative 

analog converges and, even if it does, no a posteriori bounds are available 

because the  "parameters" are grid values lying in R    rather than on a 

boundary. 
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We have not äiscusseü tbe direct method used to solve our rectang- 

ular problems.    As we mentioned earlier, many of the methods discussed 

hy Dorr [k] suffer from numerical instability and are not suitable for 

large problems.    We have used a method due to Buneman [1] which appears 

to be stable even for very large problems.    For a qualitative discussion 

explaining this stability,  see [2].    Hockney's algorithm POT 1 [7] could 

in theory reduce the times for the imbedding algorithms and the direct 

method by a factor of two, although in practice program overhead would 

reduce some of the advantage of the lower operation count. 

. Note that no use has been made of the particular geometry of the 

problem we have discussed other than it is enclosed by a rectangle.    The 

methods we have described are applicable to arbitrary domains, and their 

efficiency will depend upon the subjective factors discussed at the end 

of Section 3. 
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